金屬腐蝕:金屬材料在周圍介質的作用下受到破壞,稱為金屬腐蝕。
金屬在腐蝕過程中的化學變化基本上是金屬元素氧化形成化合物。
這種腐蝕過程一般以兩種方式進行:化學腐蝕和電化學腐蝕。
化學腐蝕:金屬表面與周圍介質直接發生化學反應而引起的腐蝕。
電化學腐蝕:金屬材料(合金或不純金屬)在與電解液接觸時通過電極反應而產生的腐蝕。這種損失有時是無法估量的。例如,一架載有數百人的飛機被腐蝕,在空中發生飛機事故,或者橋梁的鋼結構被腐蝕,導致橋梁斷裂。所以要認真對待
,&,根據金屬材料的腐蝕失效模式,腐蝕可分為均勻腐蝕和局部腐蝕。在實際的腐蝕系統中,大多數金屬的腐蝕是局部腐蝕。由于局部腐蝕發生在金屬表面的小范圍內,大多數金屬表面的腐蝕量都很小,但工程結構、零部件的使用壽命主要取決于局部腐蝕損傷的發展。
,局部腐蝕是指腐蝕主要發生在金屬材料表面的一個小區域內,而其他大多數表面的腐蝕非常輕微甚至沒有腐蝕。
,局部腐蝕是由于金屬本身(結構、組織、化學成分、表面狀態)和腐蝕介質的電化學性質不均勻,即不同部位具有不同的電極電位,從而導致電位差,成為局部腐蝕的驅動力。腐蝕往往優先發生在電極電位低的部位。在局部腐蝕過程中,腐蝕電池的陽極區和陰極區一般是完全分離的,可以通過目視或微觀檢查加以區分。一般來說,陽極的面積要比陰極的面積小得多,即形成了所謂的小陽極大陰極的構型。對于這種配置,由于陰極面積比較大,陰極退極化作用很大,小陽極區域的腐蝕非常嚴重,腐蝕集中在金屬表面的局部陽極區域。
,當發生局部腐蝕時,由于金屬表面細化程度不同,不能用平均腐蝕速率來估計局部腐蝕程度。一般情況下,局部腐蝕引起的金屬損失相對較小,但結構在發生局部腐蝕時不易被發現,危害非常大,往往會引起災難性事故。
金屬的化學腐蝕反應可分為兩個步驟。第一步是氧化步驟,第二步是脫電子步驟。氧化過程釋放自由電子,而脫電子過程是除去自由電子的過程。
陽離子可以進入溶液或與其他陰離子結合形成化合物。氧化過程必須與脫電子過程同時配合才能完成整個反應。
因此,只有通過電子去除步驟去除氧化步驟產生的自由電子,金屬原子才能不斷被腐蝕。實際的腐蝕過程是一個非常緩慢而相對均勻地在表面上失去金屬原子的過程。在某些條件下,如果在一個區域形成陽極或陰極區域,可能會出現局部腐蝕不均勻,并形成可見的腐蝕坑。
鋼鐵不會很快被腐蝕,因為它的表面在水中會形成一層氧化保護層。由于鐵容易被氧化形成氧化鐵,所以不溶于水,容易沉積在金屬表面,從而阻礙了進一步的腐蝕。這種現象稱為腐蝕鈍化。鋯、鉻、鋁、不銹鋼等金屬在常溫的水或空氣中會形成很薄的保護層,有時甚至薄得肉眼無法分辨。由于這種薄保護層,這些金屬在水或空氣中具有良好的耐腐蝕性。
金屬材料與外界介質發生化學反應而引起的損傷現象稱為化學腐蝕。在化學腐蝕過程中沒有電流,只是一個簡單的化學作用。例如,金屬表面在常溫和干燥環境下的氧化。對于不同的金屬,氧化物的結構和性能是不同的,有些能在金屬表面形成一層精細穩定的氧化膜,將內金屬與外部介質隔離開來,起到保護作用,如鉻、鋁、鋅等;有些氧化物層很松散,容易脫落,使內部的金屬繼續受到腐蝕介質的侵蝕。這種金屬的腐蝕速率是非常快的,如鐵、鎂、銅等。金屬在高溫下的氧化速率要比在低溫下快得多。防止金屬與高氧化介質接觸,可以減緩或防止金屬的化學腐蝕。常見的腐蝕介質有氧氣、氫氣、一氧化碳、二氧化碳、硫化氫、氯化氫和工業廢氣等
金屬腐蝕檢測中心本文整理一些關于腐蝕的一些資料,腐蝕破壞隨處可見,腐蝕事故頻頻發生,這除了是腐蝕本身所具有的自發性質外,很大程度上還是因為人們對腐蝕的危害性估計不足,對腐蝕與防護的重要意義認識不深,對腐蝕與防護科學缺乏應有的知識,金屬腐蝕檢測可以為企業提供依據,做好金屬腐蝕的預防措施。